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VIBRATIONS OF THE SURFACE OF AN ELASTIC 
DOUBLE-LAYERED HALF-SPACE WITH 

A PERIODIC SYSTEM OF CRACKSt 

M .  A .  S U M B A T Y A N  a n d  M .  C I A R L E T T A  

Rostov-on-Don and Salerno 

(Received 19 April 1995) 

The two-dimensional problem of the normal incidence of a plane transverse wave from the far field on to the free surface of an 
elastic double-layered half-space, comprising a homogeneous layer attached to a semi-infinite base of a different elastic material, 
is considered. At the boundary between the two media there is a system of plane cracks, arranged periodically along the separation 
line, which models the fracture zone at the interface between dense solid rock and soft sedimentary rock, The effect of the fractures 
on the transmission of a transverse seismic wave generated by a deep-focus earthquake, and of the type of vibrations of the free 
surface of the ground that result, is studied. It is difficult to predict whether the seismic wave is strengthened or weakened by 
the fracture zone. The effect of the system of cracks on vibrations of the free surface largely depends on the physical and geometrical 
parameters and, primarily, on the vibration frequencies. © 1998 Elsevier Science Ltd. All rights reserved. 

1. Suppose a plane transverse wave is incident at right-angles on a periodic system of  plane cracks si tuated 
along the bounda ry  be tween  an elastic layer of  thickness d and an elastic half-space,  o f  different  
h o m o g e n e o u s  isotropic mater ia ls  (Fig. 1). This is a mode l  of  the t ransmission of  a seismic wave coming  
f rom a lower half-space (med ium 1) and interacting with a fracture zone at its boundary  with sedimentary 
rock  ( m e d i u m  2). T h e  distance be tween  two adjacent  cracks is equal  to 2b and the lattice per iod  is 2a 
(a > b). We shall invest igate the p rob lem in a two-dimensional  formulat ion.  

Us ing  a Lap lace  t ransformat ion ,  we can reduce  the uns teady p rob lem to a s teady p r o b l e m  with 
a t ime  d e p e n d e n c e  in the fo rm exp(-io~t) for  each f requency o) of  the real spec t rum of  a seismic 
wave. 

In  bo th  the lower and  u p p e r  media  we use a Lam6 represen ta t ion  for  the d isp lacement  vec tor  [1] 
(assuming the  de fo rma t ion  to be  two-dimensional)  

u x = ~ 9 / ~ x + O V l ~ y ,  u y = ~ 9 1 ~ y - O W I O x ,  u z = 0  (1.1) 

T h e  stresses can be  expressed in te rms  of  the potent ials  of  longitudinal (tp) and t ransverse  (~/) waves  
using the  genera l ized  H o o k e ' s  law. As  we know, bo th  potent ia ls  satisfy the He lmho l t z  equa t ion  

Atp+ k2~0 = 0, AV + ks2v = 0 (1.2) 

T h e  bounda ry  condi t ions have the fo rm 

x = d : cx.~2 = O, Xxy 2 = 0; -**  < y < -0 (1.3) 

x = 0 : t~xx I = 6xx 2 = 0, Xxy I = x~,~ = 0; b <1 y I< a (1.4) 

x = 0 : ~ x x  I =t~xx2, xxy I =x~,2 ,  Uxl =Ux2 , Uy I =Uy2; l y l < b  (1.5) 

where  we have al lowed for  the fact that,  by vir tue of  the natural  periodici ty of  the  p r o b l e m  with respec t  
to the  y coordinate ,  it is sufficient to consider  the strip [ y I < a alone. 

Taking the s ame  periodici ty into account,  we have the following representa t ions  for  the potent ia ls  
in the first ( lower)  and  second (upper )  media  [2] (everywhere  below the summat ion  is t aken  over  n 
f rom 1 to oo) 

tPl = Y--Ansn exp(ql~x), VI = V0 exp(ik.~lx) + 

+ R e x p ( _ i k s l x )  + ZBnc ~ exp(rlnx), - oo < x < 0 (1.6) 
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Fig. 1. 

¢02 = ~Cn chq2.(x-a)+ D. a2nY2" shq2n(x_d)]s" 

v2 = Wsinks2(x_d)+ Z[Dnchr2.(x-d)+Cn~-~n shr2.(x-d)~ ", 0 < x < d  

(1.7) 

Here 

s n = sin Flny, c n = cos F l . y ,  FI,, = g n  / a 

qj,, = (I-1.2- k~j) ~A, 9. = ( r I  ] - k2~,,j, (1.8) 

a j .  =2H.qj . ,  [~. =2rl.rj . ,  y~. =21-I.2-ks~, j = l , 2  

where k .  1 and k-2, ks2 a r e  the wave numbers for longitudinal and transverse waves in the first and second v ,e 
media, respectwely. 

Note that expressions (1.7) automatically satisfy the boundary condition on the free surface (1.3). 

2. We shall need expressions for the displacements and stresses at the interface of the two media (at 
x = 0)  

Uxl = Z(qlnA n - I'I.B n)s". 

Uy~ = ik.,i ( R - ¥o)  + z ( r I . A .  - r~,,B. )c. 

~,yJ /Pl = o 2 ( ¥ 0  + R) + c~lX(ai.a. - "h.B.)c. 

",2 = x ( ~ . c .  +~.o.)s. 

(2.1) 

(2.2) 

%2 = -ks2 W cos k,2d + Y.(-~'. C. + la. /9.)c ,  

2 a = 2  / p2 = c ~ : . [ ~ . c .  - o . ~ . / ( 2 n . q ~ . ) ] s .  

'~,,,,= / 02 = - - ~ W  sin k a d  + c~2Y.[ C.11. l (2r l . r2 .  ) + ~..D. ]c. 
(2.4) 
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Here 

d T2n .t, 8n = q2n sh q2n - ~r2n o- r2nd 

en --: Y2n (oh q2nd - eh r2nd), ~n = ~ eh q2nd - FI n eh rznd 
21-1 n 

~n --: T~n sh qznd - a2n~2 n sh r2nd, lln = y2 n sh r2nd - a2n~2 n sh q2n d (2.5) 

I1 n := r2n sh r2nd - T2n sh q2nd, vn = T2n 
2q2 n 2FIn 

ch r2nd - n n eh q2nd 

To determine the constantsA,, B~, C~, Dn, we will introduce two unknown functions gO(y) and g*(y), 
associated with the normal and shear stress in the gap (1.5) by 

= - ~g '~(Y) ,  
C~.~1 a.~2 - [ O, 

= = I g X ( Y )  ' 
XxYZ Xx>'2 [ O, 

lyl<b 
, x = 0  

b<ly l<a  

l y l<b  
, x = O  

b <1 y I< a 

(2.6) 

Then, using the orthogonality of the trigonometric functions and the continuity of the stresses (1.5) 
on crossing the interface between the two media, we can express all the unknown coefficients in terms 
of the above functions (everywhere below the integration is performed over the segment [-b, b]) 

Z. = e , . ( r , . o ~  - ~,.G~). s .  = e , . ( (x , . c~  - ~,nG~') 

Cn = E2n~2. (aanenG~ - ~nG~), Dn = E2notan ('HanG~ + ~2.EnG~) 
(2.7) 

J~jn 2 - I = (ap/c,,TAi,) , j = 1,2 

AI n 2 = Tin - a,,,I]l,, a2. = a2.132.e2n +~.rl. 

:'°~,,, = l:(n)s.en, G~ = ]'g'(n)c.en 

(the quantity AI,, is associated with the Rayleigh function). 
Then, in the light of the other continuity conditions for displacements (1.5), we obtain a system of 

two integral equations of the first kind with different kernels relative to the functions gO(y) and g~(y) 

where 

[ K j, ( y -  n)g "(n)a~ + I Kj2(y-  n)g °(~)dn = Lj, J = 1,2; , y I< b 

L l = 2iksiWO - DG ~, I.,z = 0 (2.8) 

G" = ~g'(~)drl, D= ikst ks~-fctgks2d (2.9) 
2aplm 2 2ap2t0 

K12  = T~Elnl'In(2qlnrln - Tin) + E2nOt2n(Vn~2n~n + tXnrln)]sn 
(2.10) 

/(21 = -~'[ Elnl"In (2qlnrln - Tin) + E2n~2n (~n~2n£n - 5n~n) ]Sn 

K22 =-E[E, nks~q,n - E2.Ct2n(Sn[$2n~ n +~nnn)]Cn 
3. We will now consider a system of integral equations differing from (2.8) in the fact that LI = I (to be called 

the auxiliary system below). We have 
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gV(y) = (2iksl~O _ DGX)h V (y), v = "C,~ (3.1) 

Hence we obtain the following relation between the integral characteristics 

G x = 2ikslVO H'~/(I + DHX), H x = ShX(q)d'q (3.2) 

We now introduce a transmission of function, equal to the ratio of the amplitude of fibration of the free surface 
uy(x = d, y)  to the oscillation amplitude u0 = -iks]Wo in the incident wave 

F(to, y) = 2 [  H x 
1 + DH ~ 2atop2Cs2 sinks2d 

+ ks2~.E2nr2n(O~2nT2nenH n 

Han = l h a (q)sndq, HXn = l h X O])Cndq (3.3) 

Figure 2 shows an example of a direct numerical calculation of the modulus of the transmission function F(to, 0) 
calculated for certain real parameters of the primary and sedimentary layers a ty  = 0 (Pl = 2.2 g/cm, c/,1 = 2.80 
krn/s, cst = 1.10 km/s, P2 = 2.0 g/cm, cpz = 0.36 km/s, Cs2 = 0.21 km/s). We can compare the numericalsolution 
for d/a = 1, b/a = 0.5 (the dashed line) with the classical solution [3] of the one-dimensional problem without 
cracks (the solid line, b/a = 1). The latter is easily obtained as a special case using the above method. In fact, ifb 
= a, by virtue of the orthogonality of the trigonometric functions in the representations of the kernels (2.10), the 
solution of system (2.8) has the form 

g *(y) ~ g X = iksl~O I(bD), gO(y) = 0 ( 3 . 4 )  

Then H~ - ° - = . = - Hn - 0 (n 1, 2 , . . ) .  Moreover, it follows from Eq. (3.1) for v z that 

G ' [  
H ~ = ) ** as  b --> a (3.5) 

2iksl ¥0  - DGX 

since the denominator of the last fraction tends to zero, by virtue of Eq. (3.4). Thus expression (3.3) takes the 
form 

F(to, y) = 2(cos ks2d-  i Ps2cs2 sin ks2d) -i  (3.6) 
PslCsl 

which is identical with the classical result of seismology [3]. 
Obviously, in frequency ranges for which the dashed curve in Fig. 2 lies above the solid curve, the presence of 

a fracture zone increases the intensity of vibration of the free surface. For those frequencies where the dashed 
curve is below the solid curve, the cracks protect the surface from an incident seismic wave. For a given fixed 
frequency it is obviously impossible to predict which of these two cases applies: the result largely depends on the 
relation between the physical and geometrical parameters. However, one can draw the general conclusion that 
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fracture zones could be very hazardous for installations situated above them, since there are certain frequencies 
of the earthquake spectrum for which the vibration amplitude has local maxima of high intensity. 

The auxiliary system was solved numerically by the collocation method. It can be shown that the kernels 
Kll0') and K22(Y) have a logarithmic singularity as y ~ 0. The kernels K12(Y) and K21(Y) behave as follows: O(I y I), 
y ---> 0. These properties of the kernels ensure that the collocation method yields a stable solution of the auxiliary 
system. 

4. If the two medi~ are of the same material (the system of cracks lies in a homogeneous medium), an 
explicit analytic solution can be constructed in one special case. Assuming that: (a) the upper layer is quite thick: 
d/a >> 1, (b) the vibration frequency is low: ks2d "g 1, we have 

K,t(Y)= Ko2(Y)=a, iT,~'=-a1,1n12sin~aal, K,2(Y)=K2,(y)=O 

It follows that the normal stress component h°(v) in the auxiliary system is zero, and the second unknown function 
is found from an integral equation, the solution of which has the form [4] 

hX (y) = _rl(2aal i ~ In t0)- i  

~ = sin~a, ~0 = s i n ~ ,  ~ = coS~-a y (4.1) 

In addition, under assumptions (a) and (b), expression (3.3) for the transmission function is independent ofy  
and takes the form 

'r - I  
F(CO) = 2HX[ H exp(-iks2d )- 2acop2c~. 2 sinks2d ] 

(4.2) 
H ~ = Sh~('q)drl = -(all  ln~o) -1 

This is also an exp]icit approximate analytic representation for the transmission function for a homogeneous 
medium with surface cracks. 

It turns out that approximation (4.2) is surprisingly accurate for all (not only small) k~2d, if d/a/> 1. Figure 3 
shows the example p~ = P2 = 2.2 g/cm, %1 = Cp2 -'- 1.8 kin/s, c~1 = Cs2 ---- 1.1 k/s, d/a = 2.5, and b/a = 0.5, where 
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Fig. 3. 
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the exact numerical solution (the solid curve) is compared with the analytic solution (the dashed curve). For 
d/a ~> 3, the analytic approximation is accurate to within 5% uniformly with respect to ks2d e (0, 2~]. 

We can draw some conclusions from the explicit approximation (4.1). 
1. If ks2d = m n  (m = 0, 1 . . . .  ) we have I F(co) I = 2, that is, for these fixed frequencies the amplitude of the 

vibration of the free surface is the same as in the one-dimensional problem without cracks, whatever the value of 
the relative gap b/a. 

2. As the gap between cracks b/a --> O, we have In ~ ~ --oo. Hence H e ~ 0. Thus, I F(c0) [ tends to zero beyond 
the neighbourhood of the above frequencies. However, the properties of the logarithmic function ensure that this 
is a very slow process. For practical values of the geometrical parameters, it is therefore unlikely that the existence 
of a periodic system of cracks would be able to protect the boundary from an incoming seismic wave. 
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