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VIBRATIONS OF THE SURFACE OF AN ELASTIC
DOUBLE-LAYERED HALF-SPACE WITH
A PERIODIC SYSTEM OF CRACKS#}

M. A. SUMBATYAN and M. CIARLETTA

Rostov-on-Don and Salerno
(Received 19 April 1995)

The two-dimensional problem of the normal incidence of a plane transverse wave from the far field on to the free surface of an
elastic double-layered half-space, comprising a homogeneous layer attached to a semi-infinite base of a different elastic material,
is considered. At the boundary between the two media there is a system of plane cracks, arranged periodically along the separation
line, which models the fracture zone at the interface between dense solid rock and soft sedimentary rock. The effect of the fractures
on the transmission of a transverse seismic wave generated by a deep-focus earthquake, and of the type of vibrations of the free
surface of the ground that result, is studied. It is difficult to predict whether the seismic wave is strengthened or weakened by
the fracture zone. The effect of the system of cracks on vibrations of the free surface largely depends on the physical and geometrical
parameters and, primarily, on the vibration frequencies. © 1998 Elsevier Science Ltd. All rights reserved.

1. Suppose a plane transverse wave is incident at right-angles on a periodic system of plane cracks situated
along the boundary between an elastic layer of thickness d and an elastic half-space, of different
homogeneous isotropic materials (Fig. 1). This is a model of the transmission of a seismic wave coming
from a lower half-space (medium 1) and interacting with a fracture zone at its boundary with sedimentary
rock (medium 2). The distance between two adjacent cracks is equal to 2b and the lattice period is 2a
(@ > b). We shall investigate the problem in a two-dimensional formulation.

Using a Laplace transformation, we can reduce the unsteady problem to a steady problem with
a time dependence in the form exp(—iwt) for each frequency ® of the real spectrum of a seismic
wave.

In both the lower and upper media we use a Lamé representation for the displacement vector [1]
(assuming the deformation to be two-dimensional)

u, =9Q/0x+0y/dy, u, =0¢/dy—ay/ox, u, =0 (1.1)

The stresses can be expressed in terms of the potentials of longitudinal (¢) and transverse (y) waves
using the generalized Hooke’s law. As we know, both potentials satisfy the Helmholtz equation

BO+k20=0, Ay+kly=0 (1.2)
The boundary conditions have the form
Xx=d:0u =0, Ty =0; —0<y<ee (1.3)
x=0:6,;=06,42=0, T,,,=T,,0=0; b<lyka (14)
Xx=0:0, =0y, Tyt =Tyya Uy =Uygy Uy lhyi 1yIKD (1.5)

where we have allowed for the fact that, by virtue of the natural periodicity of the problem with respect
to the y coordinate, it is sufficient to consider the strip |y | < a alone.

Taking the same periodicity into account, we have the following representations for the potentials
in the first (lower) and second (upper) media [2] (everywhere below the summation is taken over n
from 1 to =)

@ = ZA,s, exp(qy,X), Vi = VYo exp(ikyx)+
+Rexp(—ik, x)+ IB,c, exp(r,x), ~c2<x<0 (1.6)
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Fig. 1.

@, = z[c,, chg,,(x—d)+ D, ;Ash Gon(x - d)]s,,
2n

vy, = Wsink_‘z(x—d)+):[D,, chn,(x-d)+C, gz" shrz,,(x—d)]c,,, O<x<d
2n

Here
s, =sinll,y, ¢, =cosll,y, I1,=7n/a

! i
9 jn =(n3 _k;j)é, T =(ni "k“z,)/z

0y = 201,00, Bjn =200,1, ¥, = 2005 k3, j=12

(1.7)

(1.8)

where k,; and kpz, k;, are the wave numbers for longitudinal and transverse waves in the first and second

media, respectively.

Note that expressions (1.7) automatically satisfy the boundary condition on the free surface (1.3).

2. We shall need expressions for the displacements and stresses at the interface of the two media (at

x=0)
Uy = E(qlnAn - nan )sn.

Uy = ik.\'l (R- WO) + z(nnAn - rlan )Cn

O 1 /pl = cszlz(YInAn -Blan)sn
Txyl Ip] = ‘02(“’0 + R) + cszlz(alnAn - Ylan )Cn

Uy = X(-8,C, +8,D,)s,
Uy ==k Weosk,d+2(~y,C, +1,D,)c,
2 /Py =52, C, - D,E, /(211
w2/ P2 52 n>~n nén ( n92n )]sn

Tyy2 /P2 = ~0*Wsin kyod +cSE[Cn, /211,1,) +€,D, Je.

(2.1)

(2.2)

(24)
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Here

S, =gy, 5hq,,d—~ g:” shr,d

2n

& = Y20 (chdpyd —chryyd), §, = -12-chgy,d~T1, chry,d

n

gn = Y%n shq,,d — a2nB2n shn,d, 1, = Y%n shry,d - a2n32n shgy,d (2.5)

Yon_h Qpd, V, = Yan_op n,d—TI, chg,,d

=r, shr,d-
Hy 2n 2n 242.. 2[.["

To determine the constants 4, B,, C,, D,, we will introduce two unknown functions g°(y) and g*(y),
associated with the normal and shear stress in the gap (1.5) by

g°(y), lykb
Opp)l =00 = , X=
o { 0, b<lyka
2.6
T =1 _Jgfo, Iykb (2.6)
wh T e 0, b<|yl<a’

Then, using the orthogonality of the trigonometric functions and the continuity of the stresses (1.5)
on crossing the interface between the two media, we can express all the unknown coefficients in terms
of the above functions (everywhere below the integration is performed over the segment [-b, b])

A, = B, (Y1nGy —BiaGr), B, = B, (04,Gy - 11,G;)
Co = B3P (00,€,Gy ~8,Gp), Dy = By, (-, GF + B3y, GF) @7
Ey =(apiela;,), j=1,2 '
Atn =i = 0,B1, Ag, = O2uB2,En +E,M,
Gy =[g°M)s,dn, G, =[g"(M)e,dn

(the quantity A,, is associated with the Rayleigh function).

Then, in the light of the other continuity conditions for displacements (1.5), we obtain a system of
two integral equations of the first kind with different kernels relative to the functions g°(y) and g*(y)

[Ka(y-mg mydn+ [Kp(y-ng’dn=L;, j=12; lykb
L, =2ik o - DG, L, =0 2.8)

where

ik k
Gt =" , D= Ksp - 52 tg k..d
I g (Mdn 2ap,(.02 2ap20)2 CtgKso (29

K, = _E[Elnkszlrln ~ E3B2y (Va&n = HyO2nEs )]Cu
Ky = z[Elnl-ln(qunrln ~Yin) + E2p02n(VPB2n€p + unnn)lsn
Ky = _X[Elnnna‘hnrln = T1n)+ E2nB2n(€n®2n€s - 8ngn)]sn

Ky = _Z[Elnk.?lqln = Ey, 05y (snBZnEn + gnnn )]cn

3. We will now consider a system of integral equations differing from (2.8) in the fact that L; = 1 (to be called
the auxiliary system below). We have

(2.10)
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8" ()= Q2ikgyo~DGY)'(Y), v=1.0 (3.1)
Hence we obtain the following relation between the integral characteristics
G" =2ikgyoH* (1+DH"), H" = [h*(n)dy 3.2)

We now introduce a transmission of function, equal to the ratio of the amplitude of fibration of the free surface
uy(x = d, y) to the oscillation amplitude uy = —ik;;y in the incident wave

2 I_ H' 2 G T
Flow,y)= + kg ZE o e H) +§, H
(w.y) 1+ DH® LZawpo}z sink,pd 5220 2y (020 Y 20 € &n n)cn]
HE = [h° (s,dn, H = [ (c,dn (3.3)

Figure 2 shows an example of a direct numerical calculation of the modulus of the transmission function F(ew, 0)
calculated for certain real parameters of the primary and sedimentary layers aty = 0 (p; = 2.2 g/cm, ¢,; = 2.80
km/s, ¢ = 1.10 km/s, p, = 2.0 g/em, ¢ = 0.36 km/s, ¢y = 0.21 km/s). We can compare the numencaf solution
for dja = 1, b/a = 0.5 (the dashed line) with the classical solution [3] of the one-dimensional problem without
cracks (the solid line, b/a = 1). The latter is easily obtained as a special case using the above method. In fact, if b
= g, by virtue of the orthogonality of the trigonometric functions in the representatlons of the kernels (2.10), the

solution of system (2.8) has the form

8 M =g" =ikgWo /(D). g°(»)=0 (34)
Then H;, = Hy =0 (n = 1, 2,...). Moreover, it follows from Eq. (3.1) for v = t that
T G*
H' = —oee a8 b—a .
2kgyo-DGT (3.5)

since the denominator of the last fraction tends to zero, by virtue of Eq. (3.4). Thus expression (3.3) takes the
form

F(®,y)=2(coskyd ~i “’)’26-'2 sink,pd)™! (3.6)

$1Cs1

which is identical with the classical result of seismology [3].

Obviously, in frequency ranges for which the dashed curve in Fig. 2 lies above the solid curve, the presence of
a fracture zone increases the intensity of vibration of the free surface. For those frequencies where the dashed
curve is below the solid curve, the cracks protect the surface from an incident seismic wave. For a given fixed
frequency it is obviously impossible to predict which of these two cases applies: the result largely depends on the
relation between the physical and geometrical parameters. However, one can draw the general conclusion that
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fracture zones could be very hazardous for installations situated above them, since there are certain frequencies
of the earthquake spectrum for which the vibration amplitude has local maxima of high intensity.

The auxiliary system was solved numerically by the collocation method. It can be shown that the kernels
Kj1(y) and Kj»(y) have a logarithmic singularity as y — 0. The kernels K;,(y) and K;;(y) behave as follows: O(|y |),
y —> 0. These properties of the kernels ensure that the collocation method yields a stable solution of the auxiliary
system.

4. If the two media are of the same material (the system of cracks lies in a homogeneous medium), an
explicit analytic soluticn can be constructed in one special case. Assuming that: (a) the upper layer is quite thick:
dfa > 1, (b) the vibration frequency is low: k;,d < 1, we have

A c . R
Ky =Kp)= ‘11127" =—ay, ln2sm-2—z- v KO =Ky(y)=0
1 1 1 ] k,;
ay =— + L, 8;=-E, j=1,2
! zn[Plcszl(l“anz) chfz(l—f'%)j T kg

It follows that the normal stress component h°(y) in the auxiliary system is zero, and the second unknown function
is found from an integral equation, the solution of which has the form [4]

K (y) = -"(2aa; &3 ~&2 Ingg)™!

=i ﬂ- = i .“_b. = ..nl
£ smza, Eo sm2a,n cosza 4.1)

In addition, under assumptions (a) and (b), expression (3.3) for the transmission function is independent of y
and takes the form

F(@) = 2H"[H" exp(-ikpd) - 280pac, sin kﬂd]"
4.2)
H® = [h*(m)dn=~(a), In&y)™

This is also an explicit approximate analytic representation for the transmission function for a homogeneous
medium with surface cracks.

It turns out that approximation (4.2) is surprisingly accurate for all (not only small) kd, if d/a = 1. Figure 3
shows the example p; = p, = 2.2 g/lem, ¢, = ¢y = 1.8 kmfs, ¢ = ¢» = 1.1 kfs, d/a = 2.5, and b/a = 0.5, where

|#tw,0)\
J

Fig. 3.
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the exact numerical solution (the solid curve) is compared with the analytic solution (the dashed curve). For
dja = 3, the analytic approximation is accurate to within 5% uniformly with respect to k;,d € (0, 2x].

We can draw some conclusions from the explicit approximation (4.1).

1.Ifkod = nm (m =0, 1,...) we have | F(®) | = 2, that is, for these fixed frequencies the amplitude of the
vibration of the free surface is the same as in the one-dimensional problem without cracks, whatever the value of
the relative gap b/a.

2. As the gap between cracks b/a —» 0, we have In &) — —. Hence H™ — 0. Thus, | F(w) | tends to zero beyond
the neighbourhood of the above frequencies. However, the properties of the logarithmic function ensure that this
is a very slow process. For practical values of the geometrical parameters, it is therefore unlikely that the existence
of a periodic system of cracks would be able to protect the boundary from an incoming seismic wave.
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